2010高能物理学会 第八届全国会员代表大会暨学术年会

J/ψ production at high p_T at STAR

Zebo Tang (唐泽波)

Center of Particle Physics and Technology (CPPT) University of Science and Technology of China (USTC)

Phys. Rev. C80, 041902(R), 2009 arXiv:0904.0439

Zebo Tang (唐泽波), USTC/CPPT

Outline

> Motivation

- Spectra in p+p and Cu+Cu
- > \mathbf{R}_{AA} (Cu+Cu/p+p)
- > J/ψ-hadron correlations
- > Summary

 $J/\psi(1S)$ PDG values:

Mass $m = 3096.916 \pm 0.011 MeV$

Full width $\Gamma = 0.0934 \pm 0.0021 MeV$

 $J/\psi \rightarrow e^+e^-$ branch ratio: (5.94 ± 0.06) %

*Rare probe at RHIC B*dN/dy ~10⁻⁶ in p+p*

High $p_T J/\psi$ in A+A collisions

• As a probe of the hot dense medium

 J/ψ dissociation due to color screening \rightarrow Signature of the
*QGP formation*T. Matsui and H. Satz, PLB178, 416 (1986)

 $-\frac{\alpha_{eff}}{\rho^{-r/r_D(T)}}$

Test hot wind dissociation

dissociation temperature decrease as p_T

• Investigate heavy quark energy loss

open charm vs. hidden charm

Screening in a deconfined medium: effective charge of Q and \overline{Q} reduced

Assume: medium effects described with a T-dependent potential

PRL 98, 182301(2007) and hep-ph/0607062

Zebo Tang (唐泽波), USTC/CPPT

High $p_T J/\psi$ in p+p collisions

- Baseline for A+A
- Production mechanism Color singlet model (CSM):

underpredicted CDF data by order of magnitude

Color octet model (COM):

good agreement with CDF cross section disagreement with CDF polarization

Both have improvements by including NLO and/or NNLO* But only applicable at intermediate/high p_T (p_T >3-7 GeV/c)

- Feeddown
 - $B \rightarrow J/\psi$ through J/ψ -hadron correlation

Zebo Tang (唐泽波), USTC/CPPT

STAR Detector

Large acceptance: 2π coverage at mid-rapidity

J/ψ spectra in p+p and Cu+Cu

ZBT, WWND2009

• Used EMC triggered events to take advantage of the high luminosity

1958

• Significantly extend p_T range of previous measurements in p+p at RHIC to 14 GeV/c

$J/\psi p_T$ spectra

Model comparisons:

Color singlet model: direct NNLO*

still miss the high p_T part. P. Artoisenet et al., Phys. Rev. Lett. 101, 152001 (2008), and J.P. Lansberg private communication.

LO CS+CO: better agreement with the measurements, leave little room for higher charmonium states and B feeddown contribution. G. C. Nayak, M. X. Liu, and F. Cooper, Phys. Rev. D68, 034003 (2003), and private communication.

CS and LO CS+CO have different power parameters \rightarrow different diagram contribution?

power parameter: n=8 for NNLO CS n=6 for LO CS+CO

x_T scaling in p+p collisions

$$E\frac{d^3\sigma}{dp^3} = \frac{g(x_T)}{s^{n/2}}$$

n is related to the number of point-like constituents taking an active role in the interaction

n=8: diquark scattering n=4: QED-like scattering

 π and proton at p_T>2 GeV/c: n=6.6±0.1 (PLB 637, 161(2006)) J/ ψ at high p_T: n=5.6±0.2 (close to CS+CO prediction) Soft processes affect low p_T J/ ψ production

Nuclear Modification Factor R_{AA}

♦ The only hadron no suppression at high p_T in RHIC Heavyion collisions

Contrast to open charm, CS vs. CO? CNM effect? Formation Time?

- R_{AA}>AdS/CFT+Hydro, 99% C.L.
 Contrast to AdS/CFT+Hydro prediction
- 2-component model describes the overall trend

Disentangle contributions via Correlations

Zebo Tang (唐泽波),

USTC/CPPT

Constrain bottom contribution

- No significant near side J/ ψ -hadron azimuthal angle correlation
- Correlations shows low B contribution (13 \pm 5) %
- Can used to further constrain B yields

Yields in near/away side

Near side: Consistent with no associated hadron production **Away side: Consistent with h-h correlation**

→away-side from gluon or light quark fragmentation?

More statistics and/or alternative probe on the experiment side

Further constrain on cg fusion

3

2.5

p (GeV/c)

2

at STAR will shed light on the importance of this process

Zebo Tang (唐泽波), USTC/CPPT

0.5

n

1.5

STAR, PRL94, 062301 (2005)

Current/Future High- $p_T J/\psi$ at STAR

Removed inter tracks in 2008 Reduced material budget by a factor of ~10 DAQ1000 installed in 2009 TOF had 75% in 2009, 100% in 2010

On-going analyses:

1. High-pT J/\psi using 2008 d+Au data

13 σ signals observed (4x previous p+p)
 Important for Cold Nuclear Matter (CNM)
 effects (gluon showing, cronin effect, nuclear absorption, co-mover etc.)

2. High-pT J/ ψ using 2009 high statistics p+p data M_{inv} (ee) [GeV/c²]

~15 σ signal with S/B~10 using ~1/5 of full statistics precise measurement on spectra (>1000 counts at p_T>2 GeV/c) trigger p_T and associated tracks p_T dependent J/ ψ -h correlations

J/ψ-charm correlation

500 GeV p+p data

Au+Au 200 GeV and low energy scan TOF (completed), MTD and HFT

•J/ψ spectra •ψ(2S) •χ _c	 J/ψ-hadron correlation Isolated J/ψ J/ψ in Jet
---	--

Summary

J/ψ spectra in 200 GeV p+p collisions at STAR

- Significantly extend previous measurement from 5 GeV/c to ~14 GeV/c, provide powerful tool to constrain model calculations
- High $p_T J/\psi$ follows x_T scaling with n=5.6, consistent with COM slope • Low $p_T J/\psi$ deviates from x_T scaling suggests soft process can affect low $p_T J/\psi$ production.
- **♦** J/ψ spectra in 200 GeV Cu+Cu collisions
 - First observation of no suppression for hadron at high p_T at STAR
 - Indication of R_{AA} increasing from low p_T to high p_T
 - Contrast to AdS/CFT prediction

J/ψ-hadron azimuthal correlation in p+p

- First quarknonium-hadron correlation measurement at RHIC
- No significant near side correlation
- $B \rightarrow J/\psi$ contribution = 13±5% ($p_T > 5 \text{ GeV/c}$)

Thank you!