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I. PATH INTEGRAL FORMULATION OF QUANTUM STATISTICS IN THE COHERENT-STATE
REPRESENTATION

First, we start from the partition function for a grand canonical ensemble which usually is written in the form
Z = Tre PK (1)

where g = ﬁ with k£ and T being the Boltzmann constant and the temperature and

~ ~

K=H-uN (2)

here p is the chemical potential, H and N are the Hamiltonian and particle-number operators respectively. In the
coherent-state representation, the trace in Eq. (1) will be represented by an integral over the coherent states. To
determine the concrete form of the integral, for simplicity, let us start from an one-dimensional system. Its partition
function given in the particle-number representation is

o0

2= (n|e K |n). (3)

n=0

Then, we use the completeness relation of the coherent states
/D(a*a) la><a*|=1 (4)

where | @ > denotes a normalized coherent state, i.e., the eigenstate of the annihilation operator @ with a complex
eigenvalue a

ala) = ala) (5)
whose Hermitian conjugate is
(a*]a* = a" (a”| (6)
and D(a*a) symbolizes the integration measure defined by

. Lda*da, for bosons;

— T ) ’
D(a’a) ={ da*da, for fermions. (7)
In the above, we have used the eigenvalues a and a* to designate the eigenstates |a) and (a*|, respectively. It
is emphasized that since we use the normalized eigenfunction of the coherent state whose expression in its own
representation will be shown in Eq. (15), the completeness relation in Eq. (4) has the ordinary form as we are
familiar with in quantum mechanics. Inserting Eq. (4) into Eq. (3), we have

z=7Y /D(a*a)D(a'*a') (n] ') ("% |a) (a* | n) (8)
n=0

where



(a/)nefa'*a' (9)

are the energy eigenfunctions given in the coherent-state representation (Note: for fermions, n = 0,1). The both eigen-
functions commute with the matrix element <a’* | e=BK | a> because the operator K (at,a) generally is a polynomial

of the operator a*a for fermion systems. In view of the expressions in Eq. (9) and the commutation relation
a*a = +d'a* (10)

where the signs ”+” and 7 —"

are attributed to bosons and fermions respectively, it is easy to see
(n|d’)(a" |n)=(xa" [n)(n|d). (11)

Substituting Eq. (11) in Eq. (8) and applying the completeness relations for the particle-number states and coherent
ones, one may find

Z = /D(a*a) (£a*| e PK |a) (12)

where the plus and minus signs in front of a* belong to bosons and fermions respectively.

To evaluate the matrix element in Eq. (12), we may, as usual, divide the "time” interval [0, §] into n equal and
infinitesimal parts, 3 = ne. and then insert a completeness relation shown in Eq. (4) at each dividing point. In this
way, Eq. (12) may be represented as

n—1 ~ R
Z = [ D(a*a) T] Dlafa) (+a*|e=F |an 1) (a5_s] e [an 2} - (13)
i=1 - )
X <af+1| @*EK |a1> <a;“| e*EK |ai—1> . <a>1k| 675K ‘a>
Since ¢ is infinitesimal, we can write

K@@ 1 - cR@H,a) "

where K (@™, a) is assumed to be normally ordered. Noticing this fact, when applying the equations (5) and (6) and
the inner product of two coherent states

<az | ai71> = 6_%azai—%a:—1a¢71+afai,l (15)

which suits to the both of bosons and fermions, one can get from Eq. (13) that

n—1 n
Z = [ D(a*a)e=®"® [ 1:11 D(afa;) exp{—e¢ ;K(af,ai_l)

n n—1 (16)
+ > ajai—1 — ) aja;}
i=1 i=1
where we have set
ta* =a), , a=aop. (17)

It is noted that the factor e~ @ in the first integrand comes from the matrix elements (+a*| a,_1) and (a}|a) and the
last sum in the above exponent is obtained by summing up the common terms —%af a; and —35aj_,a;_1 appearing in
the exponents of the matrix element (af | a;—1) and its adjacent ones (aj,; | a;) and (a;_; | a;—2). As will be seen in
Eq. (21), such a summation is essential to give a correct time-dependence of the functional integrand in the partition

function. The last two sums in Eq. (16) can be rewritten in the form

n n—1
> ajai—1— Y aja;
i=1 =1
1 1 n—1
J— * * £
= 305,0n-1 + 3aja0 + 35 >
=1

(18)

(452 )a; — ap (B )],



Upon substituting Eq. (18) in Eq. (16) and taking the limit ¢ — 0, we obtain the path-integral expression of the
partition functions as follows:

7= / D(a*a)e="" / D(a*a)el@ o) (19)

where
I1 %da* (T)da(t), for bosons;
D(a*a) ={ Tl da*(r)da(r), for fermions
and

) + K(a*(7), a(7))] (21)

where the last equality is obtained from the first one by a partial integration. In accordance with the definition given
in Eq. (17), we see, the path-integral is subject to the following boundary conditions

a*(B) = £a*,a(0) =a (22)
where the signs "+” and ”—" are written respectively for bosons and fermions. Here it is noted that Eq. (22) does
not implies a(f) = +a and a*(0) = a*. Actually, we have no such boundary conditions.

For the systems with many degrees of freedom, the functional-integral representation of the partition functions may
directly be written out from the results given in Eqgs. (19) -(22) as long as the eigenvalues a and a* are understood
as column matrices a = (a1, az,-- -, ak,---) and a* = (a},a3,- - -,a;,---). Written explicitly, we have

Z = /D(a*a)ef‘l’:ak/@(a*a)el(a*’a) (23)

where
I1 %daidak , for bosons;
* N _ [k
D(a*a) ={ [[dajday, , for fermions, (24)
k
]k_[ Lda;(r)dak(r) , for bosons;
D(ata) ={ lk_[da;;(T)dak(T) , for fermions (25)
and
B
I(a®,a) = ai(B)ax(5) —/ drlay,(T)ak(r) + K(ag (1), ar(7))]- (26)
0

The boundary conditions in Eq. (22) now become
arp(B) = tai , a(0) = ak. (27)

In Egs. (23) and (26), the repeated indices imply the summations over k. If the k stands for a continuous index as
in the case of quantum field theory, the summations will be replaced by integrations over k.

It should be pointed out that in the previous derivation of the coherent-state representation of the partition func-
tions, the authors did not use the expressions given in Egs. (16) and (18). Instead, the matrix element in Eq. (15)
was directly chosen to be the starting point and recast in the form

* *
a; — A;—1 a;, —a;_1

) —( Jai-1]}- (28)

(07 | ai-1) = exp{—fa; (L= -

Substituting the above expression into Eq. (13) and taking the limit & — 0, it follows



B
z= [ D@ aen(- /0 drlga* (7)i(r) — 5 (r)a(r) + K (@ (r), a(r))]} (20)

Clearly, in the above derivation, the common terms appearing in the exponents of adjacent matrix elements were not
combined together. As a result, the time-dependence of the integrand in Eq. (29) could not be given correctly. In
comparison with the previous result shown in Eq. (29), the expression written in Egs. (19)-(21) has two functional
integrals. The first integral which represents the trace in Eq. (1) is absent in Eq. (29). The second integral is defined
as the same as the integral in Eq. (29); but the integrand are different from each other. In Eq. (19), there occur two
additional factors in the integrand : one is e~ * which comes from the initial and final states in Eq. (13), another
is ezla” (Ba(B)+a”(0)a(O)] jn which a*(3) and a(0) are related to the boundary conditions shown in Eq. (22). These
additional factors are also absent in Eq. (29). As will be seen soon later, the occurrence of these factors in the
functional-integral expression is essential to give correct calculated results.

To demonstrate the correctness of the expression given in Egs. (23)-(27), let us compute the partition function for
the system whose Hamiltonian is of harmonic oscillator-type as we meet in the cases of ideal gases and free fields. In
this case,

K(a*a) = wrajag (30)

where wy, = €, — p with € being the particle energy and therefore Eq. (26) becomes

8
I(a”,a) =a?2(5)ak(5)—/0 drlai(r)an(7) + wrag(T)ax(7)). (31)

By the stationary-phase method which is established based on the property of the Gaussian integral that the integral
is equal to the extremum of the integrand which is an exponential function, we may write

/g(a*a)el(a*,a) — 610(0«*7@) (32)

where Iy(a*, a) is obtained from I(a*, a) by replacing the variables a} (7) and ax(7) in I(a*, a) with those values which
are determined from the stationary condition 61(a*,a) = 0. From this condition and the boundary conditions in Eq.
(27) which implies da} () = 0 and dax(0) = 0, it is easy to derive the following equations of motion

ar(7) + wrag(1) =0, aj (1) — wrai (1) = 0. (33)
Their solutions satisfying the boundary condition are
an(7) = are”™ %7 | aj (1) = +aje TP, (34)
On substituting the above solutions into Eq. (31), we obtain
Io(a*,a) = +ajape “*" (35)

With the functional integral given in Eqgs. (32) and (35), the partition functions in Eq. (23) become

D(a*a)e~okar(1—e7) for bosons;
Zy = / . — B ’ ' 36
0 {fD(a*a)e_ak“k(1+e %) for fermions. (36)
For the boson case, the above integral can directly be calculated by employing the integration formula:
- 1

[ Plaaje e ) = L (37)

The result is well-known, as shown in the following
7 _ 1
0 — H 1 _ e—ﬁwk (38)

k

For the fermion case, by using the property of Grassmann algebra and the integration formulas :

/da:/da*zo,/da*a*z/daazl (39)



it is easy to compute the integral in Eq. (36) and get the familiar result

ZQ = H(l + eiﬁwk) (40)
k

It is noted that if the stationary-phase method is applied to the functional integral in Eq. (29), one could not get the
results as written in Egs. (38) and (40), showing the incorrectness of the previous functional-integral representation
for the partition functions.

Now let us turn to discuss the general case where the Hamiltonian can be split into a free part and an interaction
part. Correspondingly, we can write

K(a*,a) = Ko(a*,a) + Hr(a*,a) (41)

where Ky(a*, a) is the same as given in Eq. (30) and H;(a*, a) is the interaction Hamiltonian. In this case, to evaluate
the partition function, it is convenient to define a generating functional through introducing external sources j;(7)
and ji(7) such that

Z[j*,jl = [ D(a*a)e=*** [D(a*a)exp{a}(B)ar ()

— [} drlag(T)ar(r) + K(a*a) — ji(T)ar(r) — aj(7)jn(T)]} (42)

~ I3 drH1 (55 £ 55:00)
—e V0 i () ik () Zo[j ,]]

R

where the sings "+” and ”—" in front of WS(T) refer to bosons and fermions respectively and Zy[j*, j] is defined by

Zolj*j] = / D(a*a)e—i / D(a*a)el@” ") (43)
in which
I(a*,a;5*,7) = a;.(B)ar(8) — [ d ar ()
e e o) “y

Obviously, the integral in Eq. (43) is of Gaussian-type. Therefore, it can be calculated by means of the stationary-
phase method as will be shown in detail in Sect. 4.

The exact partition functions can be obtained from the generating functional in Eq. (42) by setting the external
sources to be zero

Z=2[j", ]

J*=5=0 - (45)
In particular, the generating functional is much useful to compute the finite-temperature Green functions. For

simplicity, we take the two-point Green function as an example to show this point. In many-body theory, the Green
function usually is defined in the operator formalism by

Gri(ri,m2) = ETT{e R fay(r)af ()]} = Tr{e” @ F)Tlay(r)at (r2)]} (46)
where 0 < 71,79 < 3, 2 = —% In Z is the grand canonical potential, T' denotes the ”time” ordering operator, ax(71)
and 6l+ (12) represent the annihilation and creation operators respectively. According to the procedure described in

Eqgs. (12)-(22). it is clear to see that when taking 7 and 75 at two dividing points and applying the equations (5)
and (6), the Green function may be expressed as a functional integral in the coherent-state representation as follows

Gri(11,72) = /D a*a)e —akak /CD (a*a)ag(m1)aj (m2)e I(a”,a) (47)

With the aid of the generating functional defined in Eq. (42), the above Green function may be represented as

1 8°Z[5*,j]
Gri(m1,72) = £— —; - T 48
( 1 2) Z(S]k(Tl)(S]l(TQ) |J 7=0 ( )
where the sings ”+” and ”—" belong to bosons and fermions respectively.



II. GENERATING FUNCTIONAL OF GREEN FUNCTIONS FOR THERMAL QCD

To write out explicitly a path-integral expression of thermal QCD in the coherent-state representation, we first need
to formulate the QCD in the coherent-state representation, namely, to give exact expressions of the QCD Hamiltonian
and action in the coherent-state representation. For this purpose, we only need to work with the classical fields by
using some skilful treatments. Let us start from the effective Lagrangian density of QCD which appears in the
path-integral of the zero-temperature QCD

0 . a pa 1 apv pa 1 a ~a na
£ = p{in"(0u — igT" A} = m}py — " F, — %(amu)? —o*C D C? (49)
where T% = \%/2 is the color matrix, ¢ and v represent the quark fields, Ay, are the vector potentials of gluon fields,
C? and C? designate the ghost fields,

FY, = 0,AL — 9,A% + gf**° AL AS (50)
and
DIt = 5709, — gf " AS, (51)

For the sake of simplicity, we work in the Feynman gauge (o = 1). It is well-known that in this gauge, the results
obtained from the above Lagrangian are equivalent to those derived from the following Lagrangian which is given by
applying the Lorentz condition 9" A}, = 0 to the Lagrangian in Eq. (49),

£ = 0{in" (9, — igTAL) — my = 30, A1 A — go0<0), AL AW A% (52)
_ZQQfabcfadeAbuAcuAZAg _ aucaaﬂcb 4 gfabcapCaCbAZ

Here it is noted that the application of the Lorentz condition only changes the form of free part of the gluon Lagrangian,
remaining the interaction part of the Lagrangian in Eq. (49) formally unchanged. The above Lagrangian is written
in the Minkowski metric where the y—matrix is defined as v9 = @ and ¥ = $a]. In the following, it is convenient to
represent the Lagrangian in the Euclidean metric with the imaginary time 7 = it where ¢ is the real time.

Since the path-integral in Eq. (42) is established in the first order (or say, Hamiltonian) formalism, to perform
the path-integral quantization of thermal QCD in the coherent-state representation, we need to recast the above

Lagrangian in the first order form. In doing this, it is necessary to introduce canonical conjugate momentum densities
which are defined by

H'L/J = 6%f:¢ = W’YO = Z'er’
Iy = a?f* =0,
a oL twa abc Ab Ac
HH = D0, ATk :a _8tAM + gfiaA“AO’ (53)
. 11 = (786;(6“ )R = —atC 3
II' = (558 )L = —0:C* + gf**°C* A

where the subscripts R and L mark the right and left-derivatives with respect to the real time respectively. With the
above momentum densities, the Lagrangian in Eq. (52) can be represented as

L =Tl et TI0, A% + T1°0,C° + 8,C°" T — H (54)
where
H=Ho+Hr (55)

is the Hamiltonian density in which

= 1 a 1 a a aT7é ~a a
Ho =YYV +m)p + 5(HH)Q - §A#V2A“ —O°I" 4 C*V2C (56)
is the free Hamiltonian density and

Hr = igql_)Tavquw + gf“bc(iHﬁAZ + &-AZA;?)AZ — iggfabcf“deAﬁAﬁ

X (A§AS — AFAS) + gfobe (il A§ — 0;,C* AS)C? (57)



is the interaction Hamiltonian density here the Latin letter ¢ denotes the spatial index. The above Hamiltonian
density is written in the Euclidean metric for later convenience. The matrix v, in this metric is defined by v4 = 3 and
5 = —ifa . It should be noted that the conjugate quantities II* and " for the ghost fields are respectively defined
by the right-derivative and the left one as shown in Eq. (53) because only in this way one can get correct results.
This unusual definition originates from the peculiar property of the ghost fields which are scalar fields, but subject to
the commutation rule of Grassmann algebra.

In order to derive an expression of the thermal QCD in the coherent-state representation, one should employ the
Fourier transformations for the canonical variables of the QCD which are listed below. For the quark field,

3

0(@.7) = [ G 7)™ @ 7 e (58)
3

TE7) = [ b 0 (e 7 + 0 ()7 e (59)

where u®(p) and v®(p) are the spinor wave functions satisfying the normalization conditions u**(p)u®(p) =

X

V3T (P)vs(P) = 1, bs(P, T) and b% (P, 7) are the eigenvalues of the quark annihilation and creation operators b, (7, 7) and

Bj‘ (p, ) which are defined in the Heisenberg picture, ds(p, 7) and d%(p, 7) are the corresponding ones for antiquarks.
For the gluon field,

&Pl 1 s L
A5(#,7) = / L B [0SR, )R 4 ag (R, )i (60)
(2m)3/2 = Cu
2w(k)
where sﬁ(?) is the polarization vector and
c(= . dgk w(]g) AN(INTAC (T ik-@ ck (T, —ik-@
H/J'(:E7T) = 'L/ W ?Eu(k>[a)\(k77_)e — a)\ (k77—)e ] (61)

which follows from the definition in Eq. (53) and is consistent with the Fourier representation of free fields. In
the above, a$(k,7) and a§*(k,7) are the eigenvalues of the gluon annihilation and creation operators a5 (k, ) and
a5 (k, 7). For the ghost field, we have

CcU(z, 1) = 7d3q _ 1 Co(q, 7)eTT + ¢ (g, T)e 17T
0@ = [ G T T I (e, (62)
G2, T) = 7d3q 71 co (T, 7)e9E + (7, T)e %
0(#7) = [ Gy e @ T T e (63)
3 w P PN
(7, r) = i / (;T)g/z @[@(@ )6l — e (g 7)), (64)
and
3 w . L
W(@r) =i [ G| ol @ )™ (g re ) (65)

where ¢,(q, 7) and (g, T) are the eigenvalues of the ghost particle annihilation and creation operators ¢,(q, 7) and
¢ (g, 7) and ¢,(q,7) and €:(q, T) are the ones for antighost particles.

For simplifying the expressions of the Hamiltonian and action of the thermal QCD, it is convenient to use abbre-
viation notations. Define

0= _ bs(ﬁaT)v Zf9:+7}
b8 7) = {dz(ﬁ,ﬂ, if0=-—, (66)



and furthermore, set « = (P s,6) and

Wi - |

(2m) =3/ 2us (p), if 0 = +,}
(2m)=3/203(p), if 6 = —

Egs. (58) and (59) may be represented as

Similarly, when we define

v(Z, )= Waba<7')€i9ﬁ'f,
B, 7) = - Wb (r)e P,

Asy (k) = (2m) 78/ (2w( ,
e (k) = if(2m) =32 [w(@) /2] e (k)

i
~—
~

|

-
~

(V)

()

x>

—
1

N2

and furthermore, set a = (k, ¢, A, 6) and

Egs. (60) and (61) can be written as

For the ghost fields, if we define

and furthermore set o = (g, a, 0) and

=3 [

« cAb

Go(q) = (2m) /2 [2w(q)] /2,
Io(q) = °(2m) = *w(q) /2],

then, Eqgs. (62)-(65) will be expressed as

Upon substituting Eqgs. (69), (73) and (77) into Eqs. (56) and (57), it is not difficult to get

C*(@,7) = Y Gaca(r)e?T?

n*(Z,7) = > Maca (7')6249‘7'f
(2, 7) = S Iach(r)e 07

(67)

(68)

(77)



Hy(r) = dexHo(x) = Zo;oaé‘al)Z(T)ba(T)
5wt ()aa(r) + S wack (r)ea(7) (78)
and
Hi(r) = [ds () = 3 A@80(r)hs(r)as () + 52 Blas)aa(r)as(r)as ()
+ 3 Clopyi)ua(r)as(r)a (as(r) + 5 D@se; (es(r)as () (79)

afvyo
which are the QCD Hamiltonian given in the coherent state representation. In Eq. (78), the first, second and third
terms are the free Hamiltonians for quarks, gluons and ghost particles respectively where 6, = 6, e, = (9% +m?)*/? is
the quark energy, w, = ‘E ‘ is the energy for a gluon or a ghost particle. In Eq. (79), the first term is the interaction

Hamiltonian between quarks and gluons, the second and third terms are the interaction Hamiltonian among gluons and
the fourth term represents the interaction Hamiltonian between ghost particles and gluons. The coefficient functions
in Eq. (79) are defined as follows:

. N N = =504, o a g
A(aBy) = ig(2m)*6* (Baiia — 9505 — 04K W . (Fa) T, W2 (s) Al (K5, (80)

B(afy) = ig(2n)*5° (0uka +eﬁkﬁ+9 o) fee I (o)

X ADY (Ry) + 0k Ay (o) ADY (R )AY) (), (81)
(aﬁ’yt?)f —1g (% )353(9 Ko —H%kg—l-& k,+ 0,k )f“bcfade (82)
x Al (Fa) Ay’ (Fg)[ASy? (o) A7 (Ko ) — Afe* (k) A5y (Ko )]
and
D(ay) = ig(2m)*6* (Bude — Oails ~ 03F:) G, (d) ()

X[ (Gs) Ay (K+) — 9ka69ﬁ<qﬁ>A” ().

It is emphasized that the expressions in Eqgs. (78) and (79) are just the Hamiltonian of QCD appearing in the path-
integral as shown in Eq. (42) where all the creation and annihilation operators in the Hamiltonian (which are written
in a normal product) are replaced by their eigenvalues.

To write the path-integral of thermal QCD, we need also an expression of action S given in the coherent state
representation. This action can be obtained by using the Lagrangian density shown in Eq. (54). By partial integration
and considering the following boundary conditions of the fields:

B(7,0) = ¥(), B(#,0) = P(@), (54
Y(Z,B) = —p(@), ¥(Z,B) = —¥(@),
I (Z,0) = II},(Z, B) = 11, (Z)
and
C"(&,0) = C"(%,8) = C" (&), C*(&,0) = C*(&, B) = C*(), (86)
' (#,0) = ' (&, B) = T (7), TI*(&,0) = I*(Z, ) = [1*(Z),
the action given by the Lagrangian density in Eq. (54) can be represented in the form
S = fo dr [ dPa{ [t (F 1) (F, ) — O (@ 7)Y (E, 7))
[Hc (%, T)Ai(f, T) — Hﬁ(f, T)Ai(f, 7)] o7
4’2[1_[a(xa7_)c(a(f T) 7Ha(f>7—)0a(f>7—) ( )



where the first relation in Eq. (53) has been used and the symbol ” -7 in (&, 1), Aﬁ(f, T)eeeen now denotes the
derivatives of the fields with respect to the imaginary time 7. It is stressed here that only the above expression is
appropriate to use for deriving the coherent-state representation of the action by making use of the Fourier expansions
written in Eqgs. (58)-(65). On inserting Eqgs. (58)-(65) into Eq. (87), it is not difficult to get

S = = 5 dr{ [ d*K{3[1(8, 7)bs (. 7) = B (F, 7)bs(F, 7)] + 312 (F, 7)do (R, 7)
—d; (R r)dy (R )] + 3lasT (k)i (F, ) — 57 (k. m)as (K, 7)) + (e (B, 7) e (K, 7) (88)
g (el - s, 7)éalk, 1) + 3k, m)ea(k, )]} + H(7))

where H(7) is given by the sum of the Hamiltonians in Eqs. (78) and (79) and Sg is the action defined in the
Euclidean metric. It is noted that if one considers a grand canonical ensemble of QCD, the Hamiltonian in Eq. (88)
should be replaced by K(7) defined in Eq. (2). Employing the abbreviation notation as denoted in Egs. (66), (70)
and (74) and letting g, stand for (aq, ba, ¢ ), the action may be compactly represented as

S = / dT{z [65(7) © da(7) — d4() 0 gal(7)] + H(7)} (89)

where we have defined
4h 0 Qo = Ag— A+ + bba + 00ChCo (90)

It is emphasized that the 6, = + is now contained in the subscript . Therefore, each o may takes o™ and/or o~ as
the first term in Eq. (90) does.

With the action Sg given in the preceding section, the quantization of the thermal QCD in the coherent-state
representation is easily implemented by writing out its generating functional of thermal Green functions. According
to the general formula shown in Eq. (42), the QCD generating functional can be formulated as

= [ D(¢*q)e7"1 [ D(q*q) exp{3[q*(B) - a(B)

—0°(0)- a(0)] = S + [ dr* () - a(r)} oy
where we have defined
q q= %aaaa—kﬂ bhbo + Chca (92)
and
7" a=&0a + Oa(ngba + bana + Coca + c5Ga) (93)

here &,, 1, and (, are the sources for gluons, quarks and ghost particles respectively and the repeated index implies
summation. It is noted that the product ¢* - ¢ defined above is different from the ¢, o ¢, defined in Eq. (90) in the
terms for quarks and ghost particles and the subscript « in Egs. (92) and (93) is also defined by containing 6, =

. In what follows, we assign a® to represent the a with 6, = 4. According to this notation, the sources in Eq. (93)
are specifically defined as follows:

goﬁr = 'Som fa = 5*
Toct = Ny T = Tg (94)
Coﬁ = Cav Ca = C

where the subscript « on the right hand side of each equality no longer contains 6, and the gluon term in Eq. (92)
(1/2)a%a, may be replaced by a,-an+. The integration measures D(g*q) and D(¢*q) are defined as in Egs. (24) and
(25).

III. RELATIVISTIC EQUATION FOR QQ BOUND STATES

With the generating functional given in the preceding section, we are ready to derive the relativistic equation
for gg bound states at finite temperature. It is well-known that a bound state exists in the space-like Minkowski

10



space in which there always is an equal-time Lorentz frame. Since in the equal-time frame, the relativistic equation is
reduced to a three-dimensional one without loss of any rigorism, in this section we only pay our attention to the three-
dimensional equation which may be derived from the equations of motion satisfied by the following ¢g two-"time”
(temperature) four-point Green function

~ o~ ~

GaB;v6;11 —12) = TT{Bﬁ(QJ?)T{N[%(Tl)b; (Tl)]N[bv(TZ)B;_(Q)]}}

= (TN B (r)B ()N ()05 (7)) (%)

B
where the symbol (- - ) 5 represents the statistical average and N symbolizes the normal product whose definition can

be given from the corresponding definition at zero-temperature by replacing the vacuum average with the statistical
average

Nba ()b (12)] = Tba(11)b) (72)] — Sap(r1 — 72) (96)
where
Sap(r1 —72) = (Tla(r)bj (m)]) (97)

is the quark or antiquark thermal propagator. The normal product in Eq. (95) plays a role of excluding the contraction
between the quark and the antiquark operators from the Green function when the quark and antiquark are of the
same flavor. Physically, this avoids the ¢gg annihilation that would break stability of a bound state. Substituting Eq.
(96) in Eq. (95), we have

G(aB;v0; 11 — 12) = G(af;70; 71 — T2) — SapSys (98)
where
Glaf:dimy = 7) = (T{a(r)b) ()b, (r2)B (r2)}) (99)

is the ordinary Green function and, S,3 and S,s are the equal-time quark (antiquark) propagators. Obviously, in
order to derive the equation of motion satisfied by the Green function G(aB3;v0; 71 — 72), we need first to derive the
equation of motion for the Green function G(af;7vd; 11 — 72).

Let us start with the generating functional in Eq. (91). By partial integration of the second term on the right hand
side of Eq. (89), the generating functional may be written in the form

Zlj] = [ D(q*q)e™1" [ D(q*q) exp{q*(B) - ¢(B)

—Sg + foﬁ drj*(r) - q(1)} (100)

where
16}
Sp = / {3 4 (7) 0 dalr) + H(7)} (101)

here H(7) was given in Eqgs. (78) and (79). First, we derive an equation of motion describing the variation of the ¢g~
four-point Green function with the ”time” variable 71. For this purpose, let us differentiate the generating functional
in Eq. (100) with respect to b% (7). Considering that the generating functional is independent of b} (71) and noticing
the expressions given in Egs. (101), (78), (79) and (93), one may obtain

SZUL — [ D(g)e " [ D(q"g)[~ba(m) — cababa(r)
~ 2 Aapbp(m)a(m) + batta(m)] expla”(8) - a(8) = Se (102)
p
= Jy dri*(r) - a(r)} = 0.

When the bo(71) and ax(m1) in the above are replaced by the functional derivatives 6,0/} (m1) and 6/05% (1)
respectively and multiplying the both sides of Eq. (102) with 6, the above equation can be written as

d d ) 52
R TR Ty %: b G sy e (T2 (103)

11



Then, we differentiate the above equation with respect to the sources ng((m1), giving

d 5 5 52 53
(G sz s+ efasmmymnme + % Oabp A(pA) 5 trysma ryrg () (104)

+oap = a(T1) 5y Y 213] = 0.
Furthermore, successive differentiations of Eq. (104) with respect sources 73 (72) and ns(72) yield

d 5 53 54
(G sz s aysms i), + faca 0 007 )75 (72 )07 72)

) )
2020, AlepA) syt Gaoms a7t T daB S om ) (105)

53

5 q
—0as0(T1 = T2) szmysns ey — e () sy eens e ey 1 2 1) = 0

Similarly, when differentiating Eq. (100) with respect bg(71), one may obtain

d o 0 52

ey TRe Ope Crwen) Ze 05A( aﬁ)\)m —n5(m)} 215 =0, (106)

Subsequently, On differentiating the above equation with respect to 1 (71), we get

5 d 5 52 53
(o) (@ amtmy) — 928 50zt yomit 2 = 2,050 A(Uﬁ)‘)5773(T1)5no(71)5j§(ﬁ)

(107)
—0ap +15(T) 52 1y }Z[ ] =

Finally, successive differentiations of the above equation with respect to the sources T):(Tg) and 7s(72) give rise to

{ 5 (L 5 ) 52 — fue 54
onz (r1) Ndry dng(T1) 5?7?,(72)5775(72)5 B ’85?72(71)5776(71)5?72(72)57;5(72)
) )
= 2 0600 A BN) sy, trryoms Gy Gy )~ O S rayoms o) (108)

52 * §3 .
+0570(T1 = 7o) sremysnstmy + 15 (T) snztmyens ayems ey 1 2 11 = 0-

Adding Eq. (104) to Eq. (107), then multiplying the both sides of the equation thus obtained with —6,6s and
finally setting the external sources i}, = ng = 0, but remaining the gluon source jy # 0, we get

(d% + Oaca — 0525) 57 + MZ; (apA)dpy — A(oﬂ)\)%p]éj,;(q_l)S;g =0 (109)
where
Py
SZ:H = _;aaeﬁ(m(f_l)zd[élm |z =ng=0 (110)
is the quark (antiquark) equal-time propagator in the presence of source jy. If we define
H(ap; poy ) (di + 000 — 0525)0ap050 + D f( (a3; pod) 5 0 (111)
A NGY
where
F(@B: po) = AlapN)dss — A(05N)dap, (112)
Eq. (109) can simply be represented as
ZH(aﬁ;pa;ﬁ)j*Sgg =0. (113)

po

When summing up the both equations in Egs. (105) and (108), then multiplying the equation thus obtained with
0.030~05 and finally setting all the sources but jy to be zero, one may get

12



(g7 +0aca = 055)G(aB; 403 1 = T2)* + 32 f(0B poA) 57507y G lpors 403 1 — 72)7

4 | (114)
= 6(7’1 — 7'2)[5@—\/5@5(7'1 — 7-2)‘7>‘ — (5045575(7'2 - 7'1)”]
where
G(aBi76; 7 — ) = = 0405005 O 21 — (115)
e 2 S (r)om (ra) o (72) s (12)
and
; 1 5°Zlj]
Sop(mL — 7o) = —=0,05—— 2 11
5(7-1 TQ) A B5772(T1)577[3(T2) |’f] n=0 ( 6)

are respectively the ¢g two-"time” four-point thermal Green function and the quark or antiquark thermal propagator
in presence of source j5. When the source j is turned off, Eqs. (115) and (116) will respectively go over to the Green
function in Eq. (99) and the propagator in Eq. (97). It is noted that due to the restriction of the delta function,
the propagators in Eq. (114) are actually ”time”-independent. With the definition in Eq. (111), Eq. (114) may be
represented as

ZH(aﬂ; pJ;Tl)j*G(po;'yé;ﬁ — Tg)j* =—46(r — Tg)S(ozﬁ;'y(S)jA (117)

po

where
S(aB;y8)™ = 64557y — 6357 (118)

Acting on the both sides of Eq. (155) with the operator H(af3; po;m1)?* and using the equations in Egs. (113) and
(117), we find

> H(af; pos 1) G(posy0; 11 — 1) = 3 H(af; poy 1) Gpos 405 11 — 72)7> (119)
po po
= —8(n — 12)S(af; ¥6)’>

This indicates that the equation of motion satisfied by the Green function G(a/3;vd; 7 — 72) formally is the same as
the one shown in Eq. (114). Therefore, in the case that the source j, vanishes, we can write

(72 + 0aca — O52p)G (570571 — T2)

= —0(r — m2)5(af;v6) — EA f(aB; poX)G(po ;1051 — 72) (120)
where
GlpoXi76; 1 —12) = 554y G(poi 8T — 12)7 |50
= (TN [ZP(TI)Z:(ﬁ)aA(@]N[ZV(TQ)Z;(Q)]}% (121)
and
S(aB;70) = 8a5Sys — 05y Sas = —([baby, bybL]-) 5. (122)

~

It is noted here that similar to the definition in Eq. (96), the normal product N[bp(’l'l)/b\;r (r1)aa(m)] in Eq. (121) is
defined as

N b, (r1)b7 (11)ax(71)] = T[b,(11)b7 (11)aa(71)] — A(poX) (123)
where
A(poA) = (Tlo,(r )b (ra)a(ra)]) (124)

Substituting Egs. (96) and (1123) into Eq. (121), we have

13



G(poX;v0; 11 — T2) = G(poX;y0; 11 — 12) — A(paX)Sys (125)
where

Glpoxiydim —m2) = (T by (r )b () (m)b (r2)b (r2)}) (126)

is the ordinary five-point thermal Green function including a gluon operator in it.
By the well-known argument, it is easy to prove that the Green functions G(ag;vd; 11 — 72) and G(poX;vd; 11 — 72)
are periodic. Therefore, we have the following Fourier expansions:

(aﬂv 76 T) 5 Zg(aﬁ ’75 wn) anTa

127
Glpoxirtir) = 5 G (oo pdiw, e (127)
where 7 = 7 — 7 and w, = 2“7" Upon inserting Eq. (127) into Eq. (120) and performing the integration
%f_ﬂﬁ dre™n7 . we arrive at
(iwn — Baga + 05e5)G (35705 wy)
—S(aB;70) + 3= f(aB; poX)G(poX; v wy). (128)

poX
It is well-known that the Green function G(poX;vd;w,,) is B-S (two-particle) reducible. Therefore, we can write
Z flaB; paX)G(poX;vo;w,) = ZK(QB; v wn )G (pv; y6; wy) (129)
ATp Nz
where K (af; uv;wy,) is called interaction kernel. Thus, Eq. (128) can be written in a closed form
(i0n = Ot + 0e3)G(aB; 105 wn) = =S(aB;76) + Y K (o v wn )G (s 483 wn). (130)
nz

Now, let us turn to the equation satisfied by ¢g bound states. This equation can be derived from Eq. (130) with
the aid of the following Lehmann representation of the four-point Green function which may be derived by expanding
the time-ordered product in Eq. (95) and then inserting the complete set of ¢g bound states into Eq. (95) ,

(B)Xmn (76) Xnm(76)an(Oéﬂ)
wp — Enm iwl + Enm

G(af;d;w) = fem Z Amn{x”’"Z } (131)

where
Xnm(aB) = <m ‘N[Aagg]‘ n> (132)
which is the transition amplitude from the state with energy E, to the state with energy F,, and
Ay = e P — g=FBm, (133)

Upon substituting Eq. (131) into Eq. (130) and then taking the limit: lim,,, g, (iw; — Enp), we get the following
equation satisfied by the transition amplitude

(Enm — 0aga + 0528)Xnm (aB) = Y K(aB;98; Enm) Xnm (76) (134)
v¥é

where the fact that the function S(ag;~¢) has no bound state poles has been considered. If we take | m) to be the
vacuum state | 0) and set E = E,¢ and y,(a8) = < ’N [b bﬂ‘ > we can write from the above equation that

(E = 0aa + 0525)xn(0B) = > K(af;76; E)xn(10). (135)
v¥é
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where the subscript n in E,, has been suppressed. This just is the equation satisfied by the ¢gg bound states at finite
temperature.

Since the index « contains 6, = +, Eq. (135) actually is a set of coupled equations for the amplitudes x,(at37),
Xn(a™B1), xn(atpT) and x,,(a”B7). Following the procedure described in Refs. (16) and (17), one may reduce
the above equation to an equivalent equation satisfied by the amplitude of positive energy. We do not repeat the
derivation here. We only show the result as follows:

B — e(ka) — e(kp)lb(aB; E) = > V(ap;y8; E)¢(v5; E). (136)

~d

where ¥(af; E) = xn(at7) and V(a3;70; E) is the interaction Hamiltonian which can be expressed as

V(aBiys; B) = V™ (aB;s; B), (137)

in which
VO(aB;16; E) = K114 (aB;76; B), (138)
V) (a8:+5; E) Z Z Kitan( aﬂ po; E) ab++(PU;V5;E)’ (139)

ab#++ po - a‘g(k ) - be(Ea)

V@ (ap;y6; E)
— Ky tab(aBipo; E)Kaped (pT315 E)ch++ (uviyd; E)
- ab£+ Cd;ﬂ;‘:% (E—ac(hy)—be(ko))(E—ce(hp)—de(ky)) (140)

here a,b =+, and

N

Kiiiy(aB;70E) = K(atB™57T07; ),
K (af;v6;E) = K(a~ ;7704 E) (141)

IV. CLOSED EXPRESSION OF THE INTERACTION KERNEL IN THE EQUATION FOR QQ BOUND
STATES

In this section, we are devoted to deriving a closed expression of the interaction kernel appearing in Eq. (135)
and defined in Eq. (127). For this derivation, we need equations of motion which describe evolution of the Green
functions G(af;v0; 71 — 72) and G(afo;vd; 71 — 72) with time 75. Taking the derivatives of the generating functional
in Eq. (100) with respect to bZ(72) and bs(72) respectively, by the same procedure as described in the derivation of
Eq. (103), one may obtain

d ) ) 52 .
dry o () VO ey 29 Op A W)Mm — ()} Z[j] = 0. (142)

and
{d% 5775(272) — Bses Sratr) z; 959014(06)\)5770(73% —ni(m)}Z[j) = 0. (143)

Performing differentiations of Eqs. (142) and (143) with respect to the sources 7s(m2) and 73 (72) respectively, we get

d 5 5 52 53
s st + ersmmenes T % 000 ACYPN) 55w, (rdo7 ra)

. , (144)
+0v5 = My (72) 5751y 213 = 0
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and

) d ) ) 3
{577:(72) (T 5 (y) — 05€5 5 (12)0m5(12) g 0505 A(09A) 1% (72) 810 (72)853 (72)
—0n5 + 15 (72) 5725y 1 2 15] = 0.

onz

(145)

Furthermore, by successively differentiating Eqs. (144) and (145) with respect to the sources 0% (71) and ng(m1), one
obtains

{ 52 (i 5 ) 5 + 0. 54

ong (11)0ns (1) N dra 0n3 (72) / 0n5 (T2) v 757722(Tl)5nﬁ(‘r1)57}1§(7'2)5;76(7'2)

) )

+ 2 0,00 ANPN) S e e R ) T O S (146)
52 53 .

~0570(m = ) ety — " (T2) St oty 12U = 0

and

53 d 5 54
{snz oy tysnz o) (s s ey ) — 0565 ST B )7 (72)

d 4
= 20500 Al0ON) o rmymstrayoms om0 S o) (147)
63

52 * .
+0a50(T1 = T2) sptmienat + s (72 srtrsma e Gy Y21 = 0-

Let us sum up Eqgs. (144) and (145) at first, then multiply the both sides of the equation thus obtained with —6.,65
and finally set all the sources but the source jy to vanish. By these operations, we get

> H(y8; poi )2 S0y =0 (148)
po
where
H(y0; po; )7 = (i + 0y — 05€5)0 055 — Zf(pa)\"yé)L (149)
T dry 77 e S VNG
in which
flpoXi6) = A(00A)dy, — A(ypA))dse = —f (765 p0A) (150)

and S7) was defined in Eq. (110).

When we sum up Eqgs. (146) and (147), then multiply the both sides of the equation thus obtained with 6,630,605
and finally set all the sources but the source jy to be zero, according to the definitions in Eqgs. (115) and (116), it is
found that

ZF(’M; po; Tz)j/\G(OZﬂ;"}/(s; T — Tg)j’\ = 0(11 — 72)[0asSya(T2 — 7'1)]‘A — 0y Sas(T1 — Tg)j’\]. (151)

po

In order to derive the equation of motion satisfied by the Green function G(A7o;vd; 71 — 72) defined in Eq. (126),
we may take the derivative of Eq. (151) with respect to ji(71). In this way, we get

ZF(WS; pa; )X G(afX;v0; T — T2) = 5(T1 — T2)[Sas A(YBp; T2 — T1)7 — Sg, A(adp; 71 — o) (152)
po
where
A(Bpims — TaP = 50 S — )P (153)
’ aj5(m) 7 ’
A(a&p T — ’I'Q)jA = 76 Sag(’fl — TQ)j’\ (154)
’ 673(71)
and
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G(af;yo;m — 12)7. (155)

1)
G(afBX; v —T2) = 57
A

Acting on Eqs. (98) and (125) with the operator H(yd; po;T2) and employing Eq. (148), we find

ZH(WS; po; 1) G(af; poy T — 1) = Zﬁ(vé; po; 7o) G(afB; poy 11 — o) (156)
po po
and
Zﬁ('yé; po; T2) G (aBN; pos Ty — o) = ZF('yS; po; 7o) Gaf; po; 1 — o). (157)
po po

The above two equalities further indicate that the equations of motion satisfied by the Green functions G(a; po; 11 —
72)7 and G(aB\; po; 1 — T2)7* are formally the same as those for the ordinary Green functions G(a3; po; T3 — 72)7
and G(aB\; po; 1 — 72)7* respectively. Upon inserting Egs. (151) into Eq. (156) and Eq. (152) into Eq. (157) and
turning off the source jy, noticing the definition in Eq. (149), we derive the following equations

(d%lz + 046y — O5e5)G(af; 70511 — T2) = 8(T1 — T2)[0a5Sy5(T2 — T1)
—0pySas(ri — )] + 3 Glaf Ara; T — ) f(Ara; 79) (158)

ATo

and

(% + 046y — b5e5)G(afp;v; 11 — T2) = 8(T1 — T2) [Bas A(YBp; T2 — T1)
—dpyAadp; T — )]+ Y G(aBp; Aoy 11 — 12) f(ATo;70) (159)

ATo

where some indices have been changed for convenience,

A2 = m1) = (Tlby ()85 (m)dp(m)]) 160)
Aadpi 1 = 7) = (Tlba ()b (ra)an(r)])

which are given by Egs. (153) and (154) with setting j, = 0 and

2 .
G(ATpi Y6011 = 72) = s Sy ST V0 T = T2) [0

= (TN DA ()b (1) ()IN b (72)b5 (72)a (7)1} ) "

B

is the six-point Green function including two gluon operators in it. According to the definition in Eq. (123), we have

G(ATp; 00T — T2) = G(ATp; y00; 11 — T2) — A(ATp)A(vd0) (162)
where
G(\psy80; 71 — 72) = (T[bx(71)b3 (11)a,(71)by (72)bF (72)00 (72)]) 5 (163)

is the ordinary six-point Green function. It should be noted that due to the restriction of the delta function, the
terms in the brackets on the right hand sides of Egs. (158) and (159) actually are ”time”-independent.

It is easy to see that the Green functions G(af;Ato;71 — 72) and G(A7p;ydo; 71 — T2), as the Green functions
G(af;~0; 11 —72) and G(afp;vd; 11 —T2), are periodic. Therefore, by the Fourier transformation, i.e. by the integration

foﬁ dre™n™ noticing d/dry = —d/dr, Egs. (158) and (159) will be transformed to

(twn, + 0164 — 05¢5)G (af; 0, wp) = S(af;vd)
+ > G(aB; Aroswy) f(ATo;v9) (164)

ATo

where S(af;v0) was defined in Eq. (122) and
(iwn + 0yey — Os5e5)G(aBp; v05wn) = R(aBp;v6)
+ 3 G(aBp; AT wn) £ (Aro;79) (165)

ATo
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where

R(aBp;v6) = dasA(yBp) — dpyA(adp)

= ([Bab}, b,bF] s (166)

which is ”time”-independent.
Now we are ready to derive the interaction kernel. Acting on the both sides of Eq. (129) with (iw, + 0y, — 0s¢5)
and using Eqs. (164) and (165), one gets

> K(af; pv;wn)S(pv;v8) = Z faB;s ATp)R(ATp;v0) + 32 37 f(aB; Atp)

pv Atp Eno (167)
xXG(ATp; Enoswn) f(Eno; vd) — Z > K(af; pv;wn)G(af; Enoswy) f(ATa;70).

v €no

Operating on the both sides of Eq. (129) with the inverse of G(uv;vd;wy,), we have

K(aBiv8iwn) =Y > f(aB; Ap)G(ATp; s wn)G ™ (1 765 wn). (168)

¥ ATo

Upon substituting Eq. (168) onto the right hand side of Eq. (167) and acting on Eq. (167) with the inverse
S™Y(uv;~0), we eventually arrive at

K(afino; E) =343 faf; Amp)R(Ap;uv) + 30 57 f(aB; Atp)G(ATp;§nos E) f(§nos uw)
nY o ATp ATpéno (169)

=3 XY flaB; Atp)G(ATp; ks E)G ™ (ke; m6; E)G (76 Enos B) f(Enos jv) S (uv; 0)

ATp&no kS w6

where w,, has been replaced by E. This just is the wanted closed expression of the interaction kernel appearing in
Eq. (135). In accordance with Eq. (129), the last term in Eq. (169) can be written in the form

> DD K(aBipos E)G(pos & B)EK (S pv; B)S ™ (pss 70) (170)

po &n pv

which exhibits a typical B-S reducible structure. Therefore, the last term in Eq. (16) plays the role of cancelling the
B-S reducible part contained in the other terms in Eq. (169) to make the kernel to be B-S irreducible. If we use the
above expression in place of the last term in Eq. (169) and acting on Eq. (169) with S(vd; uv), we obtain from Eq.
(169) an integral equation satisfied by the kernel K (a3;~d; E). Define

R(aB;16) =Y flaB; M\p)R(ATp; 70) (171)
ATp
and
QaB;v0) =Y > f(aBs Arp)G(Arp; Enas E) f(Eno; v6), (172)
ATp Eno

the integral equation can be written in the matrix form as follows
KS=R+ Q- KGK. (173)

For comparison with the kernel in Eq. (169) and for convenience of nonperturbative investigations, we would like
to show the corresponding closed expression given in the position space without giving derivation. This kernel can be
obtained from the kernel in Eq. (169) by making use of the inverse of the Fourier transformations written in sect. 3
or derived from the generating functional represented in the position space by completely following the procedure as
described in this section. The kernel is represented as follows:

K(Z1,%2; 71, 52; E) = [ d®21d320{R(ZT1,%2; 21, Z2)

AN A LTy D0 L L 174
+Q(Z1,To; 21, Zo; E) — D(Z1,82; 71, Zo; B) }STH(Z1, 23 U1, §o) (174)

where R(Z1 To; 21, 22), Q(Z1, ¥o; Z,, Zo; E) and D(Zy, Ta; 71, Z2; E') are separately described below.
The function R(#1,Z2; 21, Z2) can be represented as
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2
R(T1, T3 21, 52) = D QIR T3 71, 22) (175)
i=1
in which
o= ign MY, qu = igYsnh T2 (176)
with T{* = A%/2 and T’; = —\%" /2 being the quark and antiquark color matrices respectively and
RO (&1, T3 21, 22) = 6°(&1 — 2)VIASH (T | o, 22) + 6% (T2 — Za) s AGL(E; | T, 71) (177)

here Af,(Z; | #1,71) and A (Z; | 2, 72) are defined as

A%(Z; | Z1,00) = (T[AL(T, 7)Y (Er, 7)Y (0, 1)) g

(178)

= = = a7 c(7 A
AP | @2, 2) = (T[AL(Z;, 1)Y(T2, 7)Y (%2, 71)])p
which are time-independent due to the translation-invariance property of the Green functions.
The function is of the form
2 b
Oy, ¥a; 71, 20, B) = QUHGA (T, 7 | &1, Ta; 21, B; B)QY (179)
4,g=1
in which
O = ig i TE, 05" = ighhaTy, (180)
Qﬂi’,(acl, Zj | @1,%9; %1, Z2; E) is the Fourier transform of the Green function defined by
Gob (%, 25 | T, T3 21, Z2; 11 — T2) B B (181)
= (T{N[AG(Z5, 7)P(T1, 719 (T2, 1) N AL (25, 2)P(21, 72)9 (22, 72)]}) 6
The function D(Z1, To; 21, Z2; F) is expressed by
D(&1,%2; 71,70, E) = [ H dBuyddvy, Z Qa”g( )a(xz | 1, &o; U, Uz; F)
ij=1 (182)
(J) by

Xg—l(ﬁl7ﬂ"2;vl702;E)gV (ZJ |’U1,U2,Zl,22;E)§j

in which Q,Si)a(fi | Z1, @o; Uiy, U2; F) and gﬁj)b(zj | U1, Us; 21, Zo; E) are the Fourier transforms of the following Green
functions

fo)a(fz | &1, To; Uy, Ua; T1 — T2) B . (183)
= (T{N[AL(Zs, 7)Y (T1, 7)Y (T2, 70) | N [ (U1, o) (U2, 72)]})s
and
’(/j)b(zj | 77176%51;22;7-1 - 7—2) (184)

= (T{N[ (01, 71 )12, 1)|N[AL (2, 72) (21, 7200 (22, 72)] )
The S71(Z1, Z2; 71, 92) in Eq. (174) is the inverse of the function defined by
S(#1, 0 71, 5) = 8°(F1 — Z1)VISE(Z2 — 22) + 6° (T2 — )73 Sp(F1 — 71) (185)

in which Sg (%1 — 71) and S%(Z2 — Z2) are the equal-time quark and antiquark thermal propagators respectively. It is
clear that there is one-to-one correspondence between the both kernels written in Eqs. (169) and (174). It is noted
that the interaction kernel derived in this section is nonperturbative because the Green functions included in the
kernel are defined in the Heisenberg picture. Perturbative calculations of the kernel can easily be done by using the
familiar perturbative expansions of Green functions. .
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