

	And and a state of the state of		
成像视场及样品尺寸			
 ★ 成像视场:探测器能接收到的X射: 视场的交集 ★ 光斑视场主要由晶体长度决定 	线照射的区址	或,即探测器 [。]	视场和光斑
8keV	论量keV	布拉格角	光斑视场mm
8		14.3	20×12
	2	9.5	14×12
	6	7.1	11×12
15keV 2	0	5.6	8×12
2	4	4.7	7×12
		-/ E _/E	

	纳米CT成像技术的应用领域			
研究领域	研究内容	课题	单位	
	徽纳结构材料	铁系磁性空心微纳米材料的结构与性质研究	北京航空航天大学	
1.1		徽纳多级结构材料的三维成像	中科院化学所	
纳米科学		新型生化微载体的制备与结构表征	中国科学院过程工程研 究所	
		催化剂材料的生长机理研究	中科院高能所	
	仿生材料 人工关节材料 复合材料、高分 子材料	仿生轻质高强纳米复合材料的功能与结构研究	北京大学	
		摩擦腐蚀多场耦合对医用钴合金纳米晶化的影响	北京科技大学	
功能材料		金属添加剂颗粒在高分子基质中分散行为的研究	北京大学	
		纳米材料及结构的力学新原理及精细表征技术研究	中国科技大学	
		压力诱导流动场在通用高分子中构筑多级有序层状 微观结构	东华大学	
		尼龙材料的三维纳米结构研究	北京大学	
纺织化工		在线可控多功能聚酯纤维制备技术	中国纺织科学研究院	
	JANJA	高性能聚合物纤维的显微成像研究	中石化北京化工研究院	

研究领域	研究内容	课题	单位
能源材料 电极、电池材料	电极、电池材料等	电极材料的三维纳米结构研究	中科院物理所
		锂电池材料的三维结构研究	北京大学
		基于X射线成像技术研究SOFC电极的三维微结构	中科大国家同步辐 射实验室
		利用微生物燃料电池研究典型复合污染对根际微生物的生态毒理效应	南开大学
		中温固体氧化物燃料电池阴极铬沉积和铬毒化机理研 究	中科院上海应用物 理所
石油勘探	油页岩、泥页岩、 煤岩等	天然气生成机理、资源潜力评价与战略选区	中国石油勘探开发 研究院
	19 10	页岩三维结构成像研究	中科院地质与地3 物理研究所
		不同变形机制下煤岩纳米级孔隙结构演化过程及其机 理	中国科学院大学
		中国华北地区中上元古界古油藏的成藏潜力	中国石油勘探开发 研究院
		页岩气储层特征研究与目标优选	中国石油大学

羽木CI 成像 拉不 的 应 用 领 词

研究领域	研究内容	课题	单位
生物形态学 动植物或体内徹系 统		甲虫后翅的纳米级三维结构研究	中科院动物所
		尘螨的显微CT成像	北京协和医院
		水稻扇型植硅体的三维形态结构研究	中国科学院大学
细胞生物学	细胞	利用同步辐射技术研究金属纳米材料与生物体系的作用	中科院高能所
		含钨、铌类多阴离子药物与细胞作用成像研究	苏州大学
	12.12	利用纳米成像技术研究纳米材料与细胞的相互作用	中科院高能所
		细胞及组织内金属Zn分布硬X一射线成像	南京大学
环境科学	土壤	微观尺度上土壤有机质稳定机理的研究	中国科学院大学
 其它	太空灰尘	太空灰尘的内部结构研究	意大利INFN

纳米	分辨成像系统主要	在 在 在 在 作 作 指 标
◆ 分辨	ළጃ <mark>: 30~100 nm</mark> ,视场新	范围:10~60 μm,能量覆盖范围:5~12keV
	常规X光源	视场/分辨率
	8 keV(铜靶)	15×15 μ m ² /50 nm 60×60 μ m ² /100 nm
	5.4 keV (铬靶)	15×15 μ m ² /50 nm
	同步辐射光源	视场/分辨率
	5~7 keV	15×15 μm²/50 nm
	7~9 keV	10×10 μm²/30 nm 15×15 μm²/50 nm 60×60 μm²/100 nm
	9~12 keV	15×15 μm²/50 nm

